首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30665篇
  免费   3992篇
  国内免费   5470篇
化学   27578篇
晶体学   212篇
力学   1079篇
综合类   258篇
数学   4668篇
物理学   6332篇
  2024年   30篇
  2023年   425篇
  2022年   621篇
  2021年   993篇
  2020年   1456篇
  2019年   1290篇
  2018年   1308篇
  2017年   1297篇
  2016年   1412篇
  2015年   1265篇
  2014年   1893篇
  2013年   3031篇
  2012年   1767篇
  2011年   2112篇
  2010年   1673篇
  2009年   1831篇
  2008年   1982篇
  2007年   2031篇
  2006年   1856篇
  2005年   1729篇
  2004年   1635篇
  2003年   1355篇
  2002年   923篇
  2001年   757篇
  2000年   689篇
  1999年   603篇
  1998年   507篇
  1997年   494篇
  1996年   422篇
  1995年   422篇
  1994年   343篇
  1993年   262篇
  1992年   252篇
  1991年   196篇
  1990年   159篇
  1989年   146篇
  1988年   114篇
  1987年   87篇
  1986年   80篇
  1985年   102篇
  1984年   78篇
  1983年   44篇
  1982年   63篇
  1981年   58篇
  1980年   35篇
  1979年   43篇
  1978年   41篇
  1977年   42篇
  1976年   47篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
In this paper, some nonlocal in time differential inequalities of Sobolev type are considered. Using the nonlinear capacity method, sufficient conditions for the nonexistence of nontrivial global classical solutions are provided.  相似文献   
12.
E. Casas  M. Mateos 《Optimization》2019,68(1):255-278
ABSTRACT

A class of semilinear parabolic reaction diffusion equations with multiple time delays is considered. These time delays and corresponding weights are to be optimized such that the associated solution of the delay equation is the best approximation of a desired state function. The differentiability of the mapping is proved that associates the solution of the delay equation to the vector of weights and delays. Based on an adjoint calculus, first-order necessary optimality conditions are derived. Numerical test examples show the applicability of the concept of optimizing time delays.  相似文献   
13.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
14.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
15.
The synthesis of ethyl (2′-hydroxy-4′,5′-methylendioxophenyl)acetate, a fragment of the antihyperglycemic natural coumarin subcoriacin, is reported. We found an expeditious route to the title compound in five steps. Final metal catalyzed acid ethanolysis of the vinylic 1,1-methylthio methylsulfoxide derivative afforded the required aryl acetic ester, but in the absence of metal catalyst, an unexpected Pummerer rearrangement produced the 2,3-dimethylthiofuran derivative as the major product. This last result provides an alternative entry to 2,3-dimethlythiobenzofurans.  相似文献   
16.
For optimization and control of pharmaceutically and industrially important reactions, chemical information is required in real time. Instrument size, handling, and operation costs are important criteria to be considered when choosing a suitable analytical method apart from sensitivity and resolution. This present study explores the use of a robust and compact nuclear magnetic resonance (NMR) spectrometer to monitor the stereo-selective formation of α-fluoro-α,β-unsaturated esters from α-fluoro-β-keto esters via deprotonation and deacylation in real time. These compounds are precursors of various pharmaceutically active substances. The real-time study revealed the deprotonation and deacylation steps of the reaction. The reaction was studied at temperatures ranging from 293 to 333 K by interleaved one-dimensional 1H and 19F and two-dimensional 1H–1H COSY experiments. The kinetic rate constants were evaluated using a pseudo first-order kinetic model. The activation energies for the deprotonation and deacylation steps were determined to 28 ± 2 and 63.5 ± 8 kJ/mol, respectively. This showed that the deprotonation step is fast compared with the deacylation step and that the deacylation step determines the rate of the overall reaction. The reaction was repeated three times at 293 K to monitor the repeatability and stability of the system. The compact NMR spectrometer provided detailed information on the mechanism and kinetics of the reaction, which is essential for optimizing the synthetic routes for stepwise syntheses of pharmaceutically active substances.  相似文献   
17.
The construction of DNA‐encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA‐compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium‐catalyzed reactions (Suzuki cross‐coupling, Sonogashira cross‐coupling, and copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.  相似文献   
18.
[Cp*Rh(κ3N,N′,P- L )][SbF6] (Cp*=C5Me5), bearing a guanidine-derived phosphano ligand L , behaves as a “dormant” frustrated Lewis pair and activates H2 and H2O in a reversible manner. When D2O is employed, a facile H/D exchange at the Cp* ring takes place through sequential C(sp3)−H bond activation.  相似文献   
19.
Arylsilicones are widely exploited for their thermal and optical properties. The creation of phenylsilicone elastomers with specific physical properties is typically done by a “one-off” formulation and test process. Herein, it is demonstrated that high-throughput synthesis methods can be used to rapidly prepare a series of arylsilicone elastomers and then the relative impact of different aryl groups on their physical properties is assessed. Aromatic groups were incorporated into polydimethylsiloxane (PDMS) elastomers by exploiting the relative reactivity of different functional groups in the Piers–Rubinsztajn reaction. To analyze trends in the silicone mechanical properties as a function of increasing aryl concentration—structure/property relationships—libraries of elastomers were both quickly synthesized and characterized by using high-throughput suites starting from low viscosity silicone oils/monomers in 96-well plates. Liquid handling parameters were optimized to effectively work with the silicones. Incorporating aryl instead of alkyl crosslinkers into the PDMS backbone increased the silicone elastomer modulus by approximately 50 % (at a crosslink density of 6 %); elastomers prepared with an aromatic crosslinker with three contact points led to much higher moduli compared with those with one contact point at the same crosslink density. When located at precise rather than random points on the silicone chains, diphenylsilicones had lower moduli than analogous monophenylsilicones.  相似文献   
20.
Molybdenum carbide (Mo2C) is a promising noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER), due to its structural and electronic merits, such as high conductivity, metallic band states and wide pH applicability. Here, a simple CVD process was developed for synthesis of a Mo2C on carbon cloth (Mo2C@CC) electrode with carbon cloth as carbon source and MoO3 as the Mo precursor. XRD, Raman, XPS and SEM results of Mo2C@CC with different amounts of MoO3 and growth temperatures suggested a two-step synthetic mechanism, and porous Mo2C nanostructures were obtained on carbon cloth with 50 mg MoO3 at 850 °C (Mo2C-850(50)). With the merits of unique porous nanostructures, a low overpotential of 72 mV at current density of 10 mA cm−2 and a small Tafel slope of 52.8 mV dec−1 was achieved for Mo2C-850(50) in 1.0 m KOH. The dual role of carbon cloth as electrode and carbon source resulted into intimate adhesion of Mo2C on carbon cloth, offering fast electron transfer at the interface. Cyclic voltammetry measurements for 5000 cycles revealed that Mo2C@CC had excellent electrochemical stability. This work provides a novel strategy for synthesizing Mo2C and other efficient carbide electrocatalysts for HER and other applications, such as supercapacitors and lithium-ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号